
Co Documentation
Release 1.0.0

Lars Schöning

June 16, 2014

Contents

1 Contents: 3
1.1 Installation . 3
1.2 Quickstart . 3
1.3 Mutation types . 6
1.4 Components & Features . 7
1.5 Haploid Organisms . 8
1.6 Translation helpers . 9

2 Road map 13

3 Indices and tables 15

Python Module Index 17

i

ii

Co Documentation, Release 1.0.0

Co is a Python library for accessing and altering annotated DNA sequences. It keeps track of components and lifts
over feature annotations when a component is “mutated” by applying a series of mutations. With co you can build
new consensus sequences for cloned organisms and trace changes to features within a lineage.

Contents 1

Co Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Contents:

1.1 Installation

Install co using pip:

$ pip install co

Co works with Python 2.7.x and Python 3.3+ (recommended).

1.2 Quickstart

1.2.1 Simple mutation

To illustrate what co is designed for, let’s begin with a hello world example:

>>> from co import Component
>>> from co.mutation import *
>>> hello = Component(’Hello X!’)
>>> hello.seq
Seq(’Hello X!’, Alphabet())
>>> hello_world = hello.mutate([Mutation(6, 1, ’world’)])
>>> hello_world.seq
Seq(’Hello world!’, Alphabet())

1.2.2 Features & feature inheritance

Component.feature stores feature annotations in Feature format. These feature annotations are attached to the
component they are defined in allowing, among other things, easy access to a feature sequence. Features are attached
to a component like so:

>>> from Bio.SeqFeature import *
>>>
>>> slogan = Component(’CoPy is for DNA components’, features=[
... SeqFeature(FeatureLocation(0, 4), type=’name’),
... SeqFeature(FeatureLocation(12, 15), id=’DNA’)])
>>>
>>> slogan.features.add(FeatureLocation(16, 26)).seq
Seq(’components’, Alphabet())

3

Co Documentation, Release 1.0.0

>>> [f.seq for f in slogan.features]
[Seq(’CoPy’, Alphabet()), Seq(’DNA’, Alphabet()), Seq(’components’, Alphabet())]

When a component is mutated, co automatically translates the feature annotations from the parent to the new coordi-
nate system:

>>> new_slogan = slogan.mutate([DEL(2, 2), DEL(12, 4)])
>>> new_slogan.seq
Seq(’Co is for components’, Alphabet())
>>> new_slogan.features
ComponentFeatureSet([Feature(FeatureLocation(ExactPosition(0), ExactPosition(2)), type=’name’),

Feature(FeatureLocation(ExactPosition(10), ExactPosition(20)))])
>>>
>>> [f.seq for f in new_slogan.features]
[Seq(’Co’, Alphabet()), Seq(’components’, Alphabet())]

When a region is affected by a mutation, any features contained in that region are deleted. Features that overlap the
mutated region are trimmed. Features containing mutations are marked as changed. Features that are not affected by
any mutation are left as they were—their starting coordinates are rewritten on the fly to map to the coordinate system
of any inheriting component.

In the sample above, the type ’name’ feature is resized by the mutation. The sequence of the id ’DNA’ feature is
deleted in its entirety and so the feature is deleted too. The feature spanning ’components’ has not changed at
all—but the mutations do affect its coordinates and so they are lifted over when the feature is accessed from within the
mutated component.

>>> new_slogan.features.removed
{Feature(FeatureLocation(ExactPosition(0), ExactPosition(9)), type=’name’),
Feature(FeatureLocation(ExactPosition(17), ExactPosition(20)), id=’DNA’)}

>>> list(new_slogan.features.added)
[Feature(FeatureLocation(ExactPosition(0), ExactPosition(5)), type=’name’)]

Feature diffs

Component.fdiff() is designed for comparing the features contained in any two components:

>>> diff = new_slogan.fdiff(slogan)
Diff(added=(Feature(FeatureLocation(ExactPosition(0), ExactPosition(9)), type=’library’), Feature(FeatureLocation(ExactPosition(17), ExactPosition(18)), id=’DNA’)), removed=(Feature(FeatureLocation(ExactPosition(14), ExactPosition(17)), id=’DNA’), Feature(FeatureLocation(ExactPosition(0), ExactPosition(5)), type=’library’), Feature(FeatureLocation(ExactPosition(13), ExactPosition(16)), id=’DNA’)))
>>> d.added
(Feature(FeatureLocation(ExactPosition(0), ExactPosition(9)), type=’library’),)
>>> d.removed
(Feature(FeatureLocation(ExactPosition(13), ExactPosition(16)), id=’DNA’),
Feature(FeatureLocation(ExactPosition(0), ExactPosition(5)), type=’library’))

Note: Component.fdiff() is currently only implemented for components that directly inherit
from one another. Internally, these values are looked up from Component.features.added and
Component.features.removed as shown earlier. Eventually this will work with any two components regard-
less of ancestry.

Feature search

Features can be filtered using FeatureSet.find(). This search function supports filtering by region, type, id,
strand as well as any qualifier. Multiple search parameters are interpreted as logical “AND”—i.e. all of them have to
match.

4 Chapter 1. Contents:

Co Documentation, Release 1.0.0

>>> from co import *
>>> from Bio.SeqFeature import *
>>>
>>> letters = Component(’AABBDDEE’, features=[
... SeqFeature(FeatureLocation(0, 1), type=’vowel’),
... SeqFeature(FeatureLocation(2, 5), type=’consonant’),
... SeqFeature(FeatureLocation(5, 6), type=’vowel’, qualifiers={’gene’: ’abcD’})])
>>>
>>> list(letters.features.find(type=’vowel’))
[Feature(FeatureLocation(ExactPosition(0), ExactPosition(1)), type=’vowel’), Feature(FeatureLocation(ExactPosition(5), ExactPosition(6)), type=’vowel’)]
>>> list(letters.features.find(between_start=3))
[Feature(FeatureLocation(ExactPosition(5), ExactPosition(6)), type=’vowel’), Feature(FeatureLocation(ExactPosition(2), ExactPosition(5)), type=’consonant’)]
>>>
>>> from co.mutation import *
>>> letters = letters.mutate([INS(4, ’CC’)])
>>> letters.seq
Seq(’AABBCCDDEE’, Alphabet())
>>> list(letters.features.find(type=’consonant’))
[Feature(FeatureLocation(ExactPosition(2), ExactPosition(7)), type=’consonant’)]
>>> list(letters.features.find(type=’vowel’))
[Feature(FeatureLocation(ExactPosition(0), ExactPosition(1)), type=’vowel’), Feature(FeatureLocation(ExactPosition(7), ExactPosition(8)), type=’vowel’)]
>>> list(letters.features.find(type=’consonant’, between_end=1))
[]
>>> list(letters.features.find(gene=’abcD’))
[Feature(FeatureLocation(ExactPosition(7), ExactPosition(8)), type=’vowel’)]

Optimization behind the scenes

Feature annotations that are inherited from another component are not copied over in memory — instead they are
looked up on the fly. Only added and removed features are stored. A feature is considered changed when its sequence
is affected in any way. When a feature is changed, the old feature is removed and the new feature is added.

• On-the-fly coordinate translation of unchanged features is done using
translation.TranslationTable—inspired by the UCSC Chain Format.

• Feature locations are indexed using interval.IntervalTree, currently implemented as a BST.

1.2.3 Combining components

Multiple components can be combined using Component.combine(). This function will either create a “source”
feature annotation for each of the components that are being merged, or copy over all features from all components if
copy_features=True.

>>> a = Component(’Co’)
>>> b = Component(’Py’)
>>> b.features.add(FeatureLocation(0, 3), id=’python’)
>>> c = Component.combine(a, b, copy_features=True)
>>> c.seq
Seq(’CoPy’, Alphabet())
>>> c.features
ComponentFeatureSet([Feature(FeatureLocation(ExactPosition(2), ExactPosition(5)), id=’python’)])

1.2. Quickstart 5

Co Documentation, Release 1.0.0

1.2.4 Strain inheritance

In addition to DNA components, co can track changes in haploid microbial organisms. HaploidOrganism can track
added, changed, or deleted DNA components—such as chromosomes or plasmids—and aggregate features contained
in the strains.

Strain components

HaploidOrganism.diff() tracks how components have changed across strains:

>>> from co.organism import *
>>> from co import *
>>>
>>> genome = Component(’A’)
>>> alpha = HaploidOrganism(’alpha’)
>>> alpha.set(’genome’, genome)
>>>
>>> beta = HaploidOrganism(’beta’, parent=alpha)
>>> beta.set(’genome’, genome.mutate([Mutation(0, 1, ’B’)]))
>>> beta.set(’plasmid’, Component(’AGCT’))
>>> beta.diff(alpha)
Diff(added=(’plasmid’,), removed=(), changed=(’genome’,))
>>> ~beta.diff(alpha)
Diff(added=(), removed=(’plasmid’,), changed=(’genome’,))

Strain features

HaploidOrganism.features returns a organism.FeatureView which is a searchable and iterable view
of all features in all components of a strain.

1.3 Mutation types

Mutation types are Mutation as well as INS, DEL, SUB for substitutions, and SNP for SNPs.

class co.mutation.DEL(pos, size=1)

class co.mutation.INS(pos, new_sequence, replace=False)

Parameters

• pos (int) – zero-based insertion index

• new_sequence (str or Bio.Seq) – insertion sequence

• replace (bool) – if True, eliminates the original character at the position. Some variant call
formats keep the first character of the original sequence in the replacement sequence.

class co.mutation.Mutation(position, size=None, new_sequence=’‘, end=None)
A Mutation(start, size, new_sequence) is similar to the two derived mutations:

DEL(start, size), INS(start, new_sequence)

Parameters

• position (int) – start index

• size (int) – length of deletion

6 Chapter 1. Contents:

Co Documentation, Release 1.0.0

• new_sequence (str, Component or Bio.Seq) – insertion sequence

Note: Mutation are stored as (position, size) pairs because (start, end) pairs do not allow for
unambiguous zero-length mutations (i.e. insertions). It is possible to simulate an insertion by keeping one
character of the original sequence, but that would introduce ambiguity to the exact site of the mutated sequence.

new_sequence
Replacement sequence inserted at position.

size
Length of the stretch of original sequence that is deleted at position.

position
Start index of the mutation, zero-based.

end
Computed end coordinate of the deletion. Use with caution.

is_deletion()
True if the size of the deletion is larger than the size of the insertion

is_insertion()
True if the size of the deletion is zero and new_sequence is not empty.

is_substitution()
True if the size of the deletion is equal to the size of the insertion.

new_size
The length of new_sequence

start
Identical to Mutation.position

class co.mutation.SNP(pos, new_nucleotide)

class co.mutation.SUB(pos, new_sequence)

1.4 Components & Features

The Component class is very similar to Bio.SeqRecord.SeqRecord, but does not currently sub-class it—
mainly because the features property is implemented differently.

class co.Component(seq, parent=None, features=None, removed_features=None, feature_class=None,
id=None, name=None, description=None, annotations=None, mutations=None)

features
FeatureSet containing the features present in this component.

id
A unique identifier for this component; preferably either str or UniqueIdentifier.

Parameters

• features – A list of additional features (features in addition to those inherited from parent)

• removed_features – A list of removed features (features present in parent or one of its
parents, but not present in this component)

1.4. Components & Features 7

Co Documentation, Release 1.0.0

• mutations – A list of mutations that have been applied to parent to arrive at seq. The
mutations will not be applied to seq again. Use Component.mutate() to mutate a
component.

The Feature class inherits from Bio.SeqFeature.SeqFeature but stores some additional information. Pro-
ceed with caution when using the two types interchangeably.

class co.Feature(component, *args, **kwargs)
Feature derives from SeqFeature and binds to a particular Component. Feature does not support the
sub_features argument. All other SeqFeature arguments are supported.

class co.FeatureSet(feature_class=None)
An ordered collection of SeqFeature objects.

Parameters feature_class (type) – type of the features stored in the collection; defaults to
SeqFeature and must inherit from it.

class co.ComponentFeatureSet(component, removed_features=None, feature_class=None)
An extended version of FeatureSet that binds to a Component and inherits from any FeatureSet in the
parent of a component.

When iterating over this feature set, any inherited features are also returned.

removed_features
Removed features are stored in removed_features if they are present in the parent, but not in
component.

component

1.5 Haploid Organisms

class co.organism.FeatureView(components)
Iterates over all features in a set of components – not necessarily in order – and provides search access to these
features.

find(**kwargs)
Searches all components and yields features matching the constraints.

See also:

feature.FeatureSet.find()

class co.organism.HaploidOrganism(id, parent=None)

id
ID of the organism

parent
Parent organism

diff(other)

Parameters other (HaploidOrganism) –

Returns A Diff object with added, changed, and removed component names.

fdiff(other)

Returns A Diff object with added and removed features.

8 Chapter 1. Contents:

Co Documentation, Release 1.0.0

features
A read-only view of all the features present in all components of the organism.

Returns FeatureView

get_lineage(inclusive=True)
Iterate over all ancestors of this organism

Parameters inclusive (bool) – whether to include the organism itself in the lineage

Returns iterator over HaploidOrganism objects

remove(name)

Parameters name (str) – key of the component to remove

set(name, component)

Parameters

• name (str) – key for this component e.g. ’genome’, ’chr1’, or ’pLASMID’

• component (Component) –

1.6 Translation helpers

class co.translation.MutableTranslationTable(size)

Parameters size – the length of the source sequence

A mutable version of TranslationTable with insert, delete and substitute methods for updating the trans-
lation table with the corresponding mutations.

delete(position, size, strict=True)
Insert a gap in the target sequence

Parameters

• position (int) – start of gap site

• size (int) – length of gap

• strict (bool) – use strict mode

Raises OverlapError in various edge cases involving overlapping mutations, particularly in
strict mode.

freeze()
Return an immutable version of this translation table.

Return type TranslationTable

classmethod from_mutations(sequence, mutations, strict=True)

Parameters

• sequence – the source sequence

• mutations – iterable of Mutation objects

• strict (bool) – use strict mode

classmethod from_sequences(reference, query, algorithm=None)

Raises NotImplementedError

1.6. Translation helpers 9

Co Documentation, Release 1.0.0

insert(position, size, strict=True)
Insert a gap in the source sequence

Parameters

• position (int) – start of gap site

• size (int) – length of gap

• strict (bool) – use strict mode

Raises OverlapError in various edge cases involving overlapping mutations, particularly in
strict mode.

substitute(position, size, strict=True)
Insert two gaps of equal length in the source and target sequences

Parameters

• position (int) – start of gap site

• size (int) – length of gap

• strict (bool) – use strict mode

Raises OverlapError in various edge cases involving overlapping mutations, particularly in
strict mode.

exception co.translation.OverlapError
OverlapError is raised when a mutation is applied to a position in a sequence that has been altered by a
previous mutation.

In strict mode, an OverlapError is fired more frequently, such as when a deletion is applied to a range that
has previously been modified by an insertion.

class co.translation.TranslationTable(source_size, target_size, source_start, source_end, tar-
get_start, target_end, chain)

This class is inspired by the UCSC chain format for pairwise alignments documented here:

http://genome.ucsc.edu/goldenPath/help/chain.html

TranslationTable encodes an alignment between two sequences, source and target.

The alignment is encoded in a chain of tuples in the format (ungapped_size, ds, dt), where
ungapped_size refers to regions that align, and the gaps dt and ds each refer to regions present only
in the other sequence.

source_start
The first position in the source sequence that aligns with the target sequence

source_end
The last position in the source sequence that aligns with the target sequence.

alignment()
Returns an iterator yielding tuples in the form (source, target).

Returns an iterator over all coordinates in both the source and target sequence.

alignment_str()
Returns a string representation of the alignment between source and target coordinates.

Warning: This function should only be used for debugging purposes.

10 Chapter 1. Contents:

http://genome.ucsc.edu/goldenPath/help/chain.html

Co Documentation, Release 1.0.0

ge(position)

See also:

The le() function.

Raises IndexError if position does not exist in the source or if it maps to a coordinate after the
end of the target sequence alignment.

Returns the first position, equal or greater than position that exists in the query sequence.

invert()
Creates a copy of the table where source and target are inverted.

Returns a new TranslationTable object.

le(position)
le() attempts to return the coordinate in the target sequence that corresponds to the position parameter
in the source sequence. If position falls into a gap in the target sequence, it will instead return the last
coordinate in front of that gap.

Raises IndexError if position does not exist in the source or if it maps to a coordinate before
the start of the target sequence alignment.

Returns the first position, equal or lower than position that exists in the query sequence.

total_ungapped_size
The total length of the alignment between source and target.

1.6. Translation helpers 11

Co Documentation, Release 1.0.0

12 Chapter 1. Contents:

CHAPTER 2

Road map

• Future releases may include a version tracking system to track and propagate updated mutations due to e.g. better
re-sequencing. Versioned components will maintain the relationship to the component’s child component. Most
likely, versions will be hashes of sequences and their mutations.

• An improved non-strict mode with better tolerance for overlapping mutations is planned.

• Cross-referencing between components through source feature annotations, with use for e.g. parts libraries
and BioBricks.

• As this is a very early release of co, there is a long list of general improvements—they will be developed on
demand.

13

Co Documentation, Release 1.0.0

14 Chapter 2. Road map

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

15

Co Documentation, Release 1.0.0

16 Chapter 3. Indices and tables

Python Module Index

c
co, 3
co.mutation, 6
co.organism, 8
co.translation, 9

17

	Contents:
	Installation
	Quickstart
	Mutation types
	Components & Features
	Haploid Organisms
	Translation helpers

	Road map
	Indices and tables
	Python Module Index

