

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Co 1.0.0 documentation

Welcome to Co’s documentation!

Co is a Python library for accessing and altering annotated DNA sequences. It keeps track of components and lifts
over feature annotations when a component is “mutated” by applying a series of mutations. With co you can
build new consensus sequences for cloned organisms and trace changes to features within a lineage.

Contents:

	Installation

	Quickstart
	Simple mutation

	Features & feature inheritance

	Combining components

	Strain inheritance

	Mutation types

	Components & Features

	Haploid Organisms

	Translation helpers

Road map

	Future releases may include a version tracking system to track and propagate updated mutations due to e.g.
better re-sequencing. Versioned components will maintain the relationship to the component’s child component. Most
likely, versions will be hashes of sequences and their mutations.

	An improved non-strict mode with better tolerance for overlapping mutations is planned.

	Cross-referencing between components through source feature annotations, with use for e.g. parts libraries
and BioBricks.

	As this is a very early release of co, there is a long list of general improvements—they
will be developed on demand.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Lars Schöning (DTU Biosustain).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Co 1.0.0 documentation

Installation

Install co using pip:

$ pip install co

Co works with Python 2.7.x and Python 3.3+ (recommended).

 Copyright 2014, Lars Schöning (DTU Biosustain).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Co 1.0.0 documentation

Quickstart

Simple mutation

To illustrate what co is designed for, let’s begin with a hello world example:

>>> from co import Component
>>> from co.mutation import *
>>> hello = Component('Hello X!')
>>> hello.seq
Seq('Hello X!', Alphabet())
>>> hello_world = hello.mutate([Mutation(6, 1, 'world')])
>>> hello_world.seq
Seq('Hello world!', Alphabet())

Features & feature inheritance

Component.feature stores feature annotations in Feature format. These feature annotations are attached
to the component they are defined in allowing, among other things, easy access to a feature sequence. Features are
attached to a component like so:

>>> from Bio.SeqFeature import *
>>>
>>> slogan = Component('CoPy is for DNA components', features=[
... SeqFeature(FeatureLocation(0, 4), type='name'),
... SeqFeature(FeatureLocation(12, 15), id='DNA')])
>>>
>>> slogan.features.add(FeatureLocation(16, 26)).seq
Seq('components', Alphabet())
>>> [f.seq for f in slogan.features]
[Seq('CoPy', Alphabet()), Seq('DNA', Alphabet()), Seq('components', Alphabet())]

When a component is mutated, co automatically translates the feature annotations from the parent to
the new coordinate system:

>>> new_slogan = slogan.mutate([DEL(2, 2), DEL(12, 4)])
>>> new_slogan.seq
Seq('Co is for components', Alphabet())
>>> new_slogan.features
ComponentFeatureSet([Feature(FeatureLocation(ExactPosition(0), ExactPosition(2)), type='name'),
 Feature(FeatureLocation(ExactPosition(10), ExactPosition(20)))])
>>>
>>> [f.seq for f in new_slogan.features]
[Seq('Co', Alphabet()), Seq('components', Alphabet())]

When a region is affected by a mutation, any features contained in that region are deleted. Features that overlap
the mutated region are trimmed. Features containing mutations are marked as changed. Features that are not affected by any
mutation are left as they were—their starting coordinates are rewritten on the fly to map to the coordinate system
of any inheriting component.

In the sample above, the type 'name' feature is resized by the mutation. The sequence of the
id 'DNA' feature is deleted in its entirety and so the feature is deleted too. The feature spanning 'components'
has not changed at all—but the mutations do affect its coordinates and so they are lifted over when the feature
is accessed from within the mutated component.

>>> new_slogan.features.removed
{Feature(FeatureLocation(ExactPosition(0), ExactPosition(9)), type='name'),
 Feature(FeatureLocation(ExactPosition(17), ExactPosition(20)), id='DNA')}
>>> list(new_slogan.features.added)
[Feature(FeatureLocation(ExactPosition(0), ExactPosition(5)), type='name')]

Feature diffs

Component.fdiff() is designed for comparing the features contained in any two components:

>>> diff = new_slogan.fdiff(slogan)
Diff(added=(Feature(FeatureLocation(ExactPosition(0), ExactPosition(9)), type='library'), Feature(FeatureLocation(ExactPosition(17), ExactPosition(18)), id='DNA')), removed=(Feature(FeatureLocation(ExactPosition(14), ExactPosition(17)), id='DNA'), Feature(FeatureLocation(ExactPosition(0), ExactPosition(5)), type='library'), Feature(FeatureLocation(ExactPosition(13), ExactPosition(16)), id='DNA')))
>>> d.added
(Feature(FeatureLocation(ExactPosition(0), ExactPosition(9)), type='library'),)
>>> d.removed
(Feature(FeatureLocation(ExactPosition(13), ExactPosition(16)), id='DNA'),
 Feature(FeatureLocation(ExactPosition(0), ExactPosition(5)), type='library'))

Note

Component.fdiff() is currently only implemented for components that directly inherit from one another.
Internally, these values are looked up from Component.features.added and Component.features.removed
as shown earlier. Eventually this will work with any two components regardless of ancestry.

Feature search

Features can be filtered using FeatureSet.find(). This search function supports filtering by region, type, id,
strand as well as any qualifier. Multiple search parameters are interpreted as logical “AND”—i.e. all of them have
to match.

>>> from co import *
>>> from Bio.SeqFeature import *
>>>
>>> letters = Component('AABBDDEE', features=[
... SeqFeature(FeatureLocation(0, 1), type='vowel'),
... SeqFeature(FeatureLocation(2, 5), type='consonant'),
... SeqFeature(FeatureLocation(5, 6), type='vowel', qualifiers={'gene': 'abcD'})])
>>>
>>> list(letters.features.find(type='vowel'))
[Feature(FeatureLocation(ExactPosition(0), ExactPosition(1)), type='vowel'), Feature(FeatureLocation(ExactPosition(5), ExactPosition(6)), type='vowel')]
>>> list(letters.features.find(between_start=3))
[Feature(FeatureLocation(ExactPosition(5), ExactPosition(6)), type='vowel'), Feature(FeatureLocation(ExactPosition(2), ExactPosition(5)), type='consonant')]
>>>
>>> from co.mutation import *
>>> letters = letters.mutate([INS(4, 'CC')])
>>> letters.seq
Seq('AABBCCDDEE', Alphabet())
>>> list(letters.features.find(type='consonant'))
[Feature(FeatureLocation(ExactPosition(2), ExactPosition(7)), type='consonant')]
>>> list(letters.features.find(type='vowel'))
[Feature(FeatureLocation(ExactPosition(0), ExactPosition(1)), type='vowel'), Feature(FeatureLocation(ExactPosition(7), ExactPosition(8)), type='vowel')]
>>> list(letters.features.find(type='consonant', between_end=1))
[]
>>> list(letters.features.find(gene='abcD'))
[Feature(FeatureLocation(ExactPosition(7), ExactPosition(8)), type='vowel')]

Optimization behind the scenes

Feature annotations that are inherited from another component are not copied over
in memory — instead they are looked up on the fly. Only added and removed features are stored. A feature is
considered changed when its sequence is affected in any way. When a feature is changed, the old feature is removed and
the new feature is added.

	On-the-fly coordinate translation of unchanged features is done using translation.TranslationTable—inspired
by the UCSC Chain Format.

	Feature locations are indexed using interval.IntervalTree, currently implemented as a BST.

Combining components

Multiple components can be combined using Component.combine(). This function will either create a “source”
feature annotation for each of the components that are being merged, or copy over all features from all components if
copy_features=True.

>>> a = Component('Co')
>>> b = Component('Py')
>>> b.features.add(FeatureLocation(0, 3), id='python')
>>> c = Component.combine(a, b, copy_features=True)
>>> c.seq
Seq('CoPy', Alphabet())
>>> c.features
ComponentFeatureSet([Feature(FeatureLocation(ExactPosition(2), ExactPosition(5)), id='python')])

Strain inheritance

In addition to DNA components, co can track changes in haploid microbial organisms. HaploidOrganism
can track added, changed, or deleted DNA components—such as chromosomes or plasmids—and aggregate features
contained in the strains.

Strain components

HaploidOrganism.diff() tracks how components have changed across strains:

>>> from co.organism import *
>>> from co import *
>>>
>>> genome = Component('A')
>>> alpha = HaploidOrganism('alpha')
>>> alpha.set('genome', genome)
>>>
>>> beta = HaploidOrganism('beta', parent=alpha)
>>> beta.set('genome', genome.mutate([Mutation(0, 1, 'B')]))
>>> beta.set('plasmid', Component('AGCT'))
>>> beta.diff(alpha)
Diff(added=('plasmid',), removed=(), changed=('genome',))
>>> ~beta.diff(alpha)
Diff(added=(), removed=('plasmid',), changed=('genome',))

Strain features

HaploidOrganism.features returns a organism.FeatureView which is a searchable and iterable
view of all features in all components of a strain.

 Copyright 2014, Lars Schöning (DTU Biosustain).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Co 1.0.0 documentation

Mutation types

Mutation types are Mutation as well as INS, DEL, SUB for substitutions, and
SNP for SNPs.

	
class co.mutation.DEL(pos, size=1)

	

	
class co.mutation.INS(pos, new_sequence, replace=False)

	

	Parameters:	
	pos (int) – zero-based insertion index

	new_sequence (str or Bio.Seq) – insertion sequence

	replace (bool) – if True, eliminates the original character at the position. Some variant call formats keep
the first character of the original sequence in the replacement sequence.

	
class co.mutation.Mutation(position, size=None, new_sequence='', end=None)

	A Mutation(start, size, new_sequence) is similar to the two derived mutations:

DEL(start, size), INS(start, new_sequence)

	Parameters:	
	position (int) – start index

	size (int) – length of deletion

	new_sequence (str, Component or Bio.Seq) – insertion sequence

Note

Mutation are stored as (position, size) pairs because (start, end) pairs do not allow for
unambiguous zero-length mutations (i.e. insertions). It is possible to simulate an insertion by keeping one
character of the original sequence, but that would introduce ambiguity to the exact site of the mutated sequence.

	
new_sequence

	Replacement sequence inserted at position.

	
size

	Length of the stretch of original sequence that is deleted at position.

	
position

	Start index of the mutation, zero-based.

	
end

	Computed end coordinate of the deletion. Use with caution.

	
is_deletion()

	True if the size of the deletion is larger than the size of the insertion

	
is_insertion()

	True if the size of the deletion is zero and new_sequence is not empty.

	
is_substitution()

	True if the size of the deletion is equal to the size of the insertion.

	
new_size

	The length of new_sequence

	
start

	Identical to Mutation.position

	
class co.mutation.SNP(pos, new_nucleotide)

	

	
class co.mutation.SUB(pos, new_sequence)

	

 Copyright 2014, Lars Schöning (DTU Biosustain).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Co 1.0.0 documentation

Components & Features

The Component class is very similar to Bio.SeqRecord.SeqRecord, but does not currently
sub-class it—mainly because the features property is implemented differently.

	
class co.Component(seq, parent=None, features=None, removed_features=None, feature_class=None, id=None, name=None, description=None, annotations=None, mutations=None)

	
	
features

	FeatureSet containing the features present in this component.

	
id

	A unique identifier for this component; preferably either str or UniqueIdentifier.

	Parameters:	
	features – A list of additional features (features in addition to those inherited from parent)

	removed_features – A list of removed features (features present in parent or one of its parents,
but not present in this component)

	mutations – A list of mutations that have been applied to parent to arrive at seq. The mutations will
not be applied to seq again. Use Component.mutate() to mutate a component.

The Feature class inherits from Bio.SeqFeature.SeqFeature but stores some additional information.
Proceed with caution when using the two types interchangeably.

	
class co.Feature(component, *args, **kwargs)

	Feature derives from SeqFeature and binds to a particular
Component. Feature does not support the sub_features argument. All other
SeqFeature arguments are supported.

	
class co.FeatureSet(feature_class=None)

	An ordered collection of SeqFeature objects.

	Parameters:	feature_class (type) – type of the features stored in the collection; defaults to SeqFeature and must
inherit from it.

	
class co.ComponentFeatureSet(component, removed_features=None, feature_class=None)

	An extended version of FeatureSet that binds to a Component and inherits from any
FeatureSet in the parent of a component.

When iterating over this feature set, any inherited features are also returned.

	
removed_features

	Removed features are stored in removed_features if they are present in the parent, but not in
component.

	
component

	

 Copyright 2014, Lars Schöning (DTU Biosustain).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Co 1.0.0 documentation

Haploid Organisms

	
class co.organism.FeatureView(components)

	Iterates over all features in a set of components – not necessarily in order – and
provides search access to these features.

	
find(**kwargs)

	Searches all components and yields features matching the constraints.

See also

feature.FeatureSet.find()

	
class co.organism.HaploidOrganism(id, parent=None)

	
	
id

	ID of the organism

	
parent

	Parent organism

	
diff(other)

	

	Parameters:	other (HaploidOrganism) –

	Returns:	A Diff object with added, changed, and removed component names.

	
fdiff(other)

	

	Returns:	A Diff object with added and removed features.

	
features

	A read-only view of all the features present in all components of the organism.

	Returns:	FeatureView

	
get_lineage(inclusive=True)

	Iterate over all ancestors of this organism

	Parameters:	inclusive (bool) – whether to include the organism itself in the lineage

	Returns:	iterator over HaploidOrganism objects

	
remove(name)

	

	Parameters:	name (str) – key of the component to remove

	
set(name, component)

	

	Parameters:	
	name (str) – key for this component
e.g. 'genome', 'chr1', or 'pLASMID'

	component (Component) –

 Copyright 2014, Lars Schöning (DTU Biosustain).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Co 1.0.0 documentation

Translation helpers

	
class co.translation.MutableTranslationTable(size)

	

	Parameters:	size – the length of the source sequence

A mutable version of TranslationTable with insert, delete and substitute methods for updating
the translation table with the corresponding mutations.

	
delete(position, size, strict=True)

	Insert a gap in the target sequence

	Parameters:	
	position (int) – start of gap site

	size (int) – length of gap

	strict (bool) – use strict mode

	Raises OverlapError:

		in various edge cases involving overlapping mutations, particularly in strict mode.

	
freeze()

	Return an immutable version of this translation table.

	Return type:	TranslationTable

	
classmethod from_mutations(sequence, mutations, strict=True)

	

	Parameters:	
	sequence – the source sequence

	mutations – iterable of Mutation objects

	strict (bool) – use strict mode

	
classmethod from_sequences(reference, query, algorithm=None)

	

	Raises NotImplementedError:

		

	
insert(position, size, strict=True)

	Insert a gap in the source sequence

	Parameters:	
	position (int) – start of gap site

	size (int) – length of gap

	strict (bool) – use strict mode

	Raises OverlapError:

		in various edge cases involving overlapping mutations, particularly in strict mode.

	
substitute(position, size, strict=True)

	Insert two gaps of equal length in the source and target sequences

	Parameters:	
	position (int) – start of gap site

	size (int) – length of gap

	strict (bool) – use strict mode

	Raises OverlapError:

		in various edge cases involving overlapping mutations, particularly in strict mode.

	
exception co.translation.OverlapError

	OverlapError is raised when a mutation is applied to a position in a sequence that has been altered
by a previous mutation.

In strict mode, an OverlapError is fired more frequently, such as when a deletion is applied to a range
that has previously been modified by an insertion.

	
class co.translation.TranslationTable(source_size, target_size, source_start, source_end, target_start, target_end, chain)

	This class is inspired by the UCSC chain format for pairwise alignments documented here:

http://genome.ucsc.edu/goldenPath/help/chain.html

TranslationTable encodes an alignment between two sequences, source and target.

The alignment is encoded in a chain of tuples in the format (ungapped_size, ds, dt), where
ungapped_size refers to regions that align, and the gaps dt and ds each refer to regions present
only in the other sequence.

	
source_start

	The first position in the source sequence that aligns with the target sequence

	
source_end

	The last position in the source sequence that aligns with the target sequence.

	
alignment()

	Returns an iterator yielding tuples in the form (source, target).

	Returns:	an iterator over all coordinates in both the source and target sequence.

	
alignment_str()

	Returns a string representation of the alignment between source and target coordinates.

Warning

This function should only be used for debugging purposes.

	
ge(position)

	
See also

The le() function.

	Raises IndexError:

		if position does not exist in the source or if it maps to a coordinate after
the end of the target sequence alignment.

	Returns:	the first position, equal or greater than position that exists in the query sequence.

	
invert()

	Creates a copy of the table where source and target are inverted.

	Returns:	a new TranslationTable object.

	
le(position)

	le() attempts to return the coordinate in the target sequence that corresponds to the position
parameter in the source sequence. If position falls into a gap in the target sequence, it will instead return
the last coordinate in front of that gap.

	Raises IndexError:

		if position does not exist in the source or if it maps to a coordinate before
the start of the target sequence alignment.

	Returns:	the first position, equal or lower than position that exists in the query sequence.

	
total_ungapped_size

	The total length of the alignment between source and target.

 Copyright 2014, Lars Schöning (DTU Biosustain).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Co 1.0.0 documentation

 Python Module Index

 c

 			

 		
 c	

 	[image: -]
 	
 co	

 	
 	
 co.mutation	

 	
 	
 co.organism	

 	
 	
 co.translation	

 Copyright 2014, Lars Schöning (DTU Biosustain).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Co 1.0.0 documentation

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T

A

 	

 	alignment() (co.translation.TranslationTable method)

 	

 	alignment_str() (co.translation.TranslationTable method)

C

 	

 	co (module), [1], [2], [3]

 	co.mutation (module), [1]

 	co.organism (module)

 	co.translation (module)

 	

 	Component (class in co)

 	component (co.ComponentFeatureSet attribute)

 	ComponentFeatureSet (class in co)

D

 	

 	DEL (class in co.mutation)

 	delete() (co.translation.MutableTranslationTable method)

 	

 	diff() (co.organism.HaploidOrganism method)

E

 	

 	end (co.mutation.Mutation attribute)

F

 	

 	fdiff() (co.organism.HaploidOrganism method)

 	Feature (class in co)

 	features (co.Component attribute)

 	

 	(co.organism.HaploidOrganism attribute)

 	FeatureSet (class in co)

 	FeatureView (class in co.organism)

 	

 	find() (co.organism.FeatureView method)

 	freeze() (co.translation.MutableTranslationTable method)

 	from_mutations() (co.translation.MutableTranslationTable class method)

 	from_sequences() (co.translation.MutableTranslationTable class method)

G

 	

 	ge() (co.translation.TranslationTable method)

 	

 	get_lineage() (co.organism.HaploidOrganism method)

H

 	

 	HaploidOrganism (class in co.organism)

I

 	

 	id (co.Component attribute)

 	

 	(co.organism.HaploidOrganism attribute)

 	INS (class in co.mutation)

 	insert() (co.translation.MutableTranslationTable method)

 	invert() (co.translation.TranslationTable method)

 	

 	is_deletion() (co.mutation.Mutation method)

 	is_insertion() (co.mutation.Mutation method)

 	is_substitution() (co.mutation.Mutation method)

L

 	

 	le() (co.translation.TranslationTable method)

M

 	

 	MutableTranslationTable (class in co.translation)

 	

 	Mutation (class in co.mutation)

N

 	

 	new_sequence (co.mutation.Mutation attribute)

 	

 	new_size (co.mutation.Mutation attribute)

O

 	

 	OverlapError

P

 	

 	parent (co.organism.HaploidOrganism attribute)

 	

 	position (co.mutation.Mutation attribute)

R

 	

 	remove() (co.organism.HaploidOrganism method)

 	

 	removed_features (co.ComponentFeatureSet attribute)

S

 	

 	set() (co.organism.HaploidOrganism method)

 	size (co.mutation.Mutation attribute)

 	SNP (class in co.mutation)

 	source_end (co.translation.TranslationTable attribute)

 	

 	source_start (co.translation.TranslationTable attribute)

 	start (co.mutation.Mutation attribute)

 	SUB (class in co.mutation)

 	substitute() (co.translation.MutableTranslationTable method)

T

 	

 	total_ungapped_size (co.translation.TranslationTable attribute)

 	

 	TranslationTable (class in co.translation)

 Copyright 2014, Lars Schöning (DTU Biosustain).
 Created using Sphinx 1.2.2.

 _modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Co 1.0.0 documentation »

 All modules for which code is available

		co

		co.mutation

		co.organism

		co.translation

 © Copyright 2014, Lars Schöning (DTU Biosustain).
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/minus.png

_static/comment.png

_static/up.png

_static/plus.png

_static/comment-bright.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Co 1.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Lars Schöning (DTU Biosustain).
 Created using Sphinx 1.2.2.

_static/down.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

